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The objective of this research is to develop techniques and procedures for
computing the statistical chavacteristics of some electromagnetic scattering
phenomena from radar targets. Radar measurements are perturbed by electromagnetic
scattering phenomena induced by complex targets including radar cross section
scintillation and glint or position error. The statistical characteristics of these
phenomena may be used to evaluate radar system performance, develop optimum tracking
systems, and develop stochastic models to use in system simulations.

The procedures developed use numerj:al integration to compute the moments of
the probability density functions and the characteristic function method to compute
the covariance functions. As part of the research, a deterministic model of the
electromagnetic scattering from M bodies has been developed and applied to an
ellipsoidal model of a common target drone., This model is used as the electromag-
netic scattering input to the analytic computation of the statistical characteris-
tics and to the simulation which 18 used to check the general accuracy of the

analytic solutions,

Tha statistical characteristics are computed at three points on a typical
flight path of interest for three different sets of target flight characteristics.
These statistical characteristics are conditional on the flight path, i.e., they
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are functions of the flight path., The agreement
between the analytic computations and simulations
is excellent. The sensitivity of the electromag-
netic scattering statistics to the flight motion
statistics is generally as expected. The data
from the simulations are very similar in nature
to dynamic measurements,
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1. INTRODUCTION

1,1 1Introducrion to the Radar Problem

Many modern radar systems are capable of tracking targets in four
dimensi-..s: range, azimuth angle, elevation angle, and doppler
frequency. There is, however, a point at which target induced effects
become significant contributors to system measurement errors. Angle
tracking is perturbed by an effect called glint; range tracking and
other functions are perturbed by cross-section scintillation; and
doppler tracking is perturbed by apparent target phase center motion
not related to translational motion.

A pulse doppler radar eystem transmits a pulse of electromagnetic
energy of known amplitude and phase at a known time, The signal

reflected from a target is received by the radar, and is processed to

give

(1) The target range

(2) The target size or radar cross-section (RCS)

(3) The target azimuth angle

(4) The target elevation angle

(5) The target phkase angle.

The errors involved in these measurements can be divided into two
bagic types. Type I errors are those caused by noise and imperfect
signal and data processing. These errors exist even for a perfect

target such as a sphere. Type II errors are those introduced by the




2
the target. A complex target such as an aircraft; or even two spheres,
has RCS and scattering phase which are functions of the aspect angles
and reflect or scatter a wavefront which is distorted or nonspherical,

The Type I errors have been investigated and extensively studied
[1, 2, 3], The Type II errors have had less development than the Type
I errors, The primary reasons for this are the complexity of the
problem and the dependence of the,effects on the particular body under
consideration. Unlike thermal noise which can readily be modeled as
white noise, the target induced effects depend on the target, its
aspect angles and its motion., The following is a summary of the errors
of interest and an indication of the relationship of the two types of
errors.

The equation for power received by a monostatic radar is given by

2.2
Pt G N S8

rec (Qﬂ)3 R4 L

P (1.1)

where

Pt = transmitted power

G = antenna gain

A = radar wavelength

R = range from radar to target

L = numerical factor to account for lcases

S = target RCS.
The measurement of target range is generally limited by the signal-to-
noise ratio which depends on received power. The rms range error

caused by thermal noise is given by [3]:

C / T
N
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where

¢ = velacity of light

T = transmitted pulse width

B = receiver bandwidth

E = received energy

0" receiver noise power spectrum.

The target iaduced errors are manifested as changes in the received
energy, E, (sometimes exceeding 50 decibels peak to peak) caused by
changes in apparent target RCS; 1£ is apparent from (1.2) that the two
errors are interrelated. Similarly, the target induced errors affect
the angular position measurements and the target phase angle (doppler
frequency) measurements.

All angle tracking systems are essentially phase-front measuring
devices and have been shown to be equivalent to each other in perfor-
mance [4], Only amplitude monopulse systems will be discussed herein
since they are predominant in the modern generation of radar systems .
A dual-plane monopulse radar generally has four squinted beams which
are combined to give a sum channel and two angle error channels (2.
An ideal target on boresight will give zero outputs from the angle
tracking channels., The target induced error is manifested as a tilt
in phase front which gives an apparent target error signal. The
angular error signal is inversely proportional to range. The effects
of glint, then, are mogt sigaificant at close ranges such as
encountered in homing missile systems. The theoretical rms angular
error, caused by thermal noise for a uniformly illuminated antenna,

is given by [1]
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0.628 0,
e = (1.3)
2E
No

where eb is the half-power beam width. Again the effect of variation
in E should be noted.

Doppler tracking, in a pulse doppler radar, is accomplished by
measuring the phase shift of the RF signal from transmission to
reception, modulo 2n radians. The rms phase error caused by thermal

noise is given by [3]

e = L . (1.4)

In addition to this error, there is an apparent target phase center
motion which is aspect angle dependent. Target motion, other than
purely radial, may cause a random modulation of the target phase range.

However, as outlined previously, the major interdependence of the
two types of errors are caused by the change in RCS and so in the
received energy, E. Therefore, it is possible to separate the two
types of errors in a convenient manner, It will be assumed hereafter
that the only interdependence is that induced by the RCS. Thus,
modeling of the target induced effects need not consider the radar
characteristics, except as delineated below, and the radar receiver
model need not be modified to consider the Type II errors.

The phenomena of amplitude scintillation, glint, and doppler
scintillation are different manifestations of the vector summaticn of
the electromagnetic waves reflected and refracted by complex targets,
Aithough basically target induced, these phenomena are affected by

some of the characteristics of the observing radar such as resolutionm,
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polarization, wavelength, tracking implementation, and type (monostatic
or bistatic*). All but very few targets have RCS, glint, and phase
centers which are sensitive to wavelength and polarization. These
characteristics should be included in any complete model of the target

phenomena, but not all are within the scope of this work.
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Although bistatic radars are of some interest, especially in semi-
active homing systems, the discussion and proposed research will be
limited to monostatic systems. It is assumed that the range resolution
is such that the entire target is always in the range resolution cell,
Similarly, it will be assumed that the target is smaller than the
angular resolution and is always in the angular resolution‘cell. The
range of radar frequencies will be limited to those most commonly used
for search and tracking systems, i.e., L-band through X-band “. GHz
through 10 GHz).

It would, at first, appear to be of value to have a complete

deterministic model of the particular target of interest to the radar

M T WS £ TR T IS L opy eyt S POATT, BT R A

system, Further consideration, however, indicates that this is not

a very practical goal. The target appearing in the radar field of view
and the target aspect angles will seldom be known, except perhaps by
the ability to classify the target in general terms such as rotary

wing; fixed wing, propeller driven; fixed wing, jet propelled; etc,

TV E BT O S T

It would not be practical to store complete target data for all targets
L‘
of interest in the radar system computer even if it was possible to

*

A monostatic radar has its transmitting and receiving antennas
collocated or common whereas a bistatic radar may have its trans-
mitting and receiving antennas separated by large distances.
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generate such data. The most obvious and most practical approach is to
model the problem statistically.

The objective of this research has been to develop techniques to
determine important statistical properties of target induced scintilla-
tion and glint.

1.2 Review of Past Work

A brief review of the history and evolution of radar systems and
the development of models will help to gather perspective on the
problem and the status of work in the area. The review presented is
necessarily brief and oriented toward the problem under study.
References {1, 2, 3, 5, 6, 7, and 8) are general treatises on modern
radar systems.

The radar systems operating at the start of World War II were used
primarily for early warning and ranging since they had poor angular
accuracy. The war spurred research and development on radar systems,
especially radar fire control systems for antiaircrait systems. The
SCR 584, introduced early in the war, was the first operational fire
control system developed by the U.S. which required no assistance from
optical angle trackers. It could track targets in three dimensions:
azimuth angle, elevation angle, and range. Since World War II the
development and evolution of radar systems have continued at an almost
fantastic pace. The types of radar systems have proliferated due to
differing operating requirements and constraints,

Amplitude scintillation was noted in World War II when target
fading was frequently observed. It was not until angle tracking systems
improved significantly that glint was first noticed. At first it was

ascribed as an effect of amplitude scintillation since large values of




ot T
o AT QNSRS o
I .

L2 PO pE ALy SFre

ST o F

A4 {0

Ladat &

" v

o

o st

AT,

2ol

il

. T v
RS e TR AR

A e
B O SINTSITAG sy mroppe o g a Niw s o e

glint occurred only with low signal levels., Later it was determined to
be a separate phenomenon. The relationships between glint and
amplitude scintillation had to wait even longer before it was clearly
established, It is now accepted that the three phenomena of amplitude
scintillation, glint, and doppler scintillation are different manifes~
tations of the same target induced effects.

The development of target models, both analytical and statistical,
parallels the evolutionary growth in sophistication and performance of
radar systems., Amplitude scintillation and its effects on target
detection have been extensively treated from a statistical point of
view, Marcum [9) developed the theory of detection probabilities of
constant cross section targets in additive white noise for search type
radars, considering the effects of pulse integration, scanning effects,
etc,

Swerling [10, 11]) advanced the theory by considering fluctuating
targets. The four cages originally consjdered, which encompassed most
targets, are as follows:

(1) Case 1 - The target is assumed to be constant for time~-on=
target for a single scan but fluctuates randomly on a scan=-to-scan

basis. The probability density function of the target cross section,

S, is assumed to be:
f (s)=-1——exp (-—?-), s 0 (1.5)
S 5 g

where

s =E (8) .
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(2) Case 2 - The target fluctuations are random on a pulse=to-
pulse basis. The probability density function is the same as for
Case 1.

(3) Case 3 - The target is assumed to be constant for the time-

on-target of a single scan but fluctuates on a scane-to~scan basis with

the cross section having a probability density function given by

E(s) = 22 exp (--2_—3) sz 0 . (1.6)
3 ‘ 5 8

(4) Case 4 = The target fluctuations are random on a pulse-to-

pulse basis with the same probability density function as Case 3.

T PR S e P 8

These distributions are chi-square distributions with 2 and 4

degrees of freedom for Cases 1 and 2 and Cases 3 and 4, respectively.

ERGEE A TS

Swerling's work has found wide acceptance in thé field, especially
since the results were presented in convenient graphical form. Swerling
[12] has investigated additional fluctuating models including log-
normally distributed targets. Heidbreder and Mitchell {13] have also
investigated detection probabilities for log-normally distributed tar-
gets. A log-normally distributed target is one which has a cross
section whose logarithm is normally distributed., The density function

is given by

£ a——y . — < ——

1 Ins = 2
£ (8) = —————— exp |- dns = p) sZ2 0
S os./ 2 =n 2 02 ’

where p and ¢ are the mean and variance of ln S, respectively.

(1.7)

Sponsler [14] investigated the track-while-scan problem encountered
with mechanically scanned search radars. Using a firsteorder, two-
state Markov process, Sponsler established bounds on the scan-to-scan

correlation coefficient and derived the Kolomogorov differential
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equations for a nonstationary, continuous parameter Markov process
which could be used to simulate radar data for arbitrary fiight paths.
The equations are a function of the blip-to-scan ratic, i.e., time-on=

target to scan time ratio.

Weinstock [15]) investigated target models for missile and
satellite shapes and concluded that the chi-square models give poor
representation of the tails of the distributions. Weinstock also con=
cluded that if one was constrained to using chi-square models the
: median rather than the mean should be specified,

The U.S. Naval Research laboratory has been investigating glint
since 1947. The efforts have been devoted primarily to understanding

and explaining the underlying causes of the phenomenon. The first

pubiished work on statistical modeling of glint was by Delamo [16. 17].

L B TS il ]

Considering mathematically simple arrays of point scatters, Delano

at

computed the statistical distribution of the angular errors. For
example, considering a single angle tracking chaunel and a linear array
of scatterers of statistically independent amplitude and phase, all
: scatterers having approximately the same mean value, Delano derived the
result that the apparent target center is outside the actual target
13.4 percent of the time. This result was of great significance and
has been quoted many times, often out of context.

Muchmore [18, 19] investigated amplitude scintillation spectra
using Delano's models. Although Muchmore's and Delano's work was
criticized by Peters and Weimer [20, 21, 22] because of the simplicity

of the models, the spectra obtained were reasonably similar to

3 empirical results. Development of statistical glint models has not

e
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progressed significantly since ti.2se two papers, probably due in

part to the extreme complexity of the problem,

e AL B ———— AP e,

Meade et al. [73] investigated the two body model, often called
the dumbbell model, ¢ nd derived the result that the apparent target

position, eT, is givex by

: 6 2
: 0 1-k

1+ k + 2k ces g
where
90 = angular separation of the targets
k = cross section ratio of the targets
@ = relative phase angle of the response
of the tarpcts.

Meade's results indicate that the «ngle error can go to infinity.
Ostrovityanov [ 24] corrected this error by noting that the assumption
tan 6 ~ 6 was implicit in Meade's derivation. Making the correction,
one finds that 6 is bounded by +xn/2 which i: more reasonable. Howard
[ 25] interpreted glint as a distortion or tii:* in the wavefront and
demonstrated means of computing glint as a function of aspect angle
for N-body targets, where N is any finite number, Gubonin [ 26) used
Howard's interpretation of glint and derived glint siatistics, arriving
at essentially the same results as Delano. Gubonin dic, however,
avoid the implied approximation of tan § ~ 6 and obtained more general
results,

Lindsay [27] expanded on the phase front approach and cuncluded
that glint and amplitude and doppler scintillation can be expi-iaed by
congidering Vp, i.e., the normal to the phase front, and its relaiton

to the antenna beam axis. Dunn and Howard [28] concluded basically
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the same fact independently, and demonstrated that the phenomena can
be explained by considering the Poynting vector of the reflected or
scattered wave.

Modeling of large complex radar targets such as aircraft is at
best an extremely difficult and rather inexact task [29], and the
techniques used are guidad to scme extent ty the specific objective
of the researcher. Little or no effort has been devoted to target
modeling as proposed herein. Previous work has been devoted to
investigating or modeling nne or more of the phenomena such as Borison
[30] in doppler scintillation; Swerling [10, 11, 12]), Weinstock [15},
Heidbreder and Mitchell [13), Edrington [3l] and Sponsler [14) in
amplitude scintillation; Muchmore [18] in scintillation spectra;
Delano [16], Howard [25], Gubonin [26], Besalov and Ostrovityanov [32],
Dr-m and Howard [29, 33), and Sims and Graff |34, 35] in glint; or in
the analysis of the relationships among the phenomena such as work by
lLindsay [27]) and Dunn and Howard [28].

RCS modeling is the most developed area of radar target
scattering. The IEEE devoted an entire issue of the Proceedings (Vol.
53, No., 8, August 1965) to radar reflectivity. Included in the papers
was a rather extensive bibliography [36] of work in the field through
1964, A bibliography of more recent works may be found in [37].
Techniques in RCS modeling range from the exact solution for spheres
by Mie [38]) to the empirical approximations by Crispin and Maffett
[39] . Three comprehensive works in the field have been published in
recent years [40, 41, 42]), Some of the more interesting work in radar

scattering recently include the works of Ross (43, 44], Oshiro, et al.,

PREAL s + 8 B
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: [45, 46, 47], Moll and Seecamp [48], Ryan 49, 50], Keller [51, 52,
53], Bechtel [54], Uslenghi and Lee [55], and Pierson and Clay [56].

% Electromagnetic (EM) scattering has been categorized into three

é regions: Rayleigh, resonance, and optical, depending on the character=
f istic dimensions of the body. The Rayleigh region is characterized by
i bodies whose characteristic dimensions are less than a quarter of a

% wavelength. In this region, the RCS is approximately proportional to
§ ; the volume squared and inversely proportional to the wavelength of the
% g fourth power, neglecting degenerate cases such as discs and wires. The

b
e
3

A
”
i

v

resonance region covers the region from approximately a quarter
wavelength to a few wavelengths in body dimenions. In the resonance

region body shape, orientation and specific dimensions are of

particular importance. The simplest example of resonance effects is

the variation of cross section versus frequency curve for spheres.

PRI Y

;j The optical region covers bodies whose characteristic dimensions
are large with respect to a wavelength. In the optical region many

i approximation techniques such as geometric optics, physical optics,

geometrical theory of diffraction, and fringe wave theory are applied.

ST

Modeling of glint has had less development although the subject

F e A:-«‘“ﬂ i25

has remained of significant interest since the original work by the

Naval Research Laboratories. The subject of doppler gcintillation has

Cr s T oAty e

received little attention although interest in this phenomenon has

4

increased in recent years because of the development of pulse doppler
radar systems and the increased resolution capabilities desired.

1.3 Statement of the Problem

3 The evaluation of the performance of a radar system requires a

knowledge not only of the radar system hardware and characteristics,
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but also of the radar target. Radar system evaluations are generally
performed using probabilistic or statistical approaches, with perfor-
mance specified in terms like probability of detection, probability of
false alarm, and rms tracking accuracy (in range, azimuth and elevation
angles, and doppler frequency). Such an evaluation tequires statisti-
cal models of the EM scattering parameters which affect system perfor=
mance. The statistical characteristics of the EM scattering parameters
are, as mentioned in Section 1.1, dependent on the target and its
angular and translational motion. The objective of this work is to
develop techniques to determine these statistics. In particular, this
work is directed toward development of techniques to: (1) determine
the moments of the RCS and the azimuth and elevation errors, AZER and
ELER, respectivel&, and (2) determine the covariance functions for
these three parameters.

The work is divided into two basic phases. The first phase,
described in Chapter 2, is the development of a deterministic model of
the EM scattering from a target. The equations for the RCS aud target
induced error signals are developed for an M-body target and then
applied to an ellipsoidal model of a target drone. The second phase,
described in Chapter 3, is the selection of important statistical
characteristics of the EM scattering and development of techniques to
compute these statistical characteristics. The characteristic
function method of computing these statistical characteristics is
derived for the discrete case and implemented on a digital computer.

A simulation was developed to provide a check on the general
accuracy of the analytic solutions. A comparison of the simulations

and analytic solutions is presented in Chapter 4.
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i A secondary objective of this research is to identify the areas
where data or theory is inadequate to support the ultimate objective
of developing stochastic models of the radur scattering for use in

; simulations of air defense systems, Many of these limitations are

identified as they are encountered, and all identifiable problem areas

X are covered in the conclusions,
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2. ANALYTIC MODELING OF RADAR TARGET SCATTERING PARAMETERS

2.1 General

In this section the deterministic models for the scattering
parameters of interest are derived. These parameters are the target
induced effects which cause errors in the radar system, mamely the
radar cross section (RCS), the azimuth error (AZER), the elevation
error (ELER), and the target phase (PHAS). The RCS is used here in
its conventional form. Glint, for the purposes of this research, is
defined as the linear errors, in meters, in the target azimuth (AZER)
and elevation (ELER) positions, referenced to the target range. The
target phase (PHAS) is defined here as the phase of the electromagnetic
(EM) vector reflected from the target as compared to an EM vector
reflected from a point scatterer located at the target center.

The approach used assumes that the target can be divided into
M different scattering elements located at fixed points in the target
coordinate system. The EM scattering from each element is determined
as a function of the aspect angles. Then, the scattering parameters
can be determined, as functions of the aspect angles, by vector
summation of the scattering from the M scattering elements.

Two primary coordinate systems (shown in Figure 2.1) are of
interest., One is the ground fixed coordinate system with the observing
radar at its origin. The azimuth (A7) and elevation (EL) angles

normally used by radar systems are indicated as are the conventional
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polar coordinates. The x' coordinate is downrange, the y' coordinate
is cross range, and the z' coordinate is altitude. The position of the
target is given by (xo, Yo zo) or in polar coordinates by (Ro, 60,
cpo). The other coordinate system is the target fixed coordinate system
with the center of the target located at the origin. The x axis is

the longitudinal axis, the positive y axis is out the left wing, and
the positive z axis is up. The yaw, pitch, and roll argles, o, B, and
y, respectively, are rotations about the z, y, and x axes, respectively
where (x and y are defined in a right sense and g8 is in a lefthanded
sense., The angles 6 and ¢ which are the polar coordinates of the radar
in the target fixed coordinates system are usually referred to as the
aspect angles.,

The two coordinate systems are related by the following

transformations:
- r ,
x t11 %12 Ri3{|* "%
]
Yl =|ta t2 ta|{Y Y 2.1)
'-
2] L% %32 R "%
1) [
x 1t t3p % *9
! =
y t12 t22 t32 yl| + yo (2.2)
]
=] 513 f23 ta3]|® %0
where

tll = cos 0 cos B -~ sin @ sin B sin y
t:].2 = sin @ cos B

t:13 = cos @ 8in B + sin a@ cos B sin y
ty, = = cos a sin B siny - sin @ cos B

t,, = o8 Q cos y

ok
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t23 = cos 0y ¢cos B siny - sin ¢ sin B
t31 = - sin B cos ¥
t32 = - sin ¥y

tyq = cos B cos 7. (2.3)

2.2 Scattering Parameters of M-Bodies

The modeling approach selected is based upon the work of Dunn and
Howard {28] and Ostrovityanov [24]. It is assumed that there are M
scatterers on the body, each of which may be aspect angle dependent,
The i-~th scatterer is located at (xi’ ¥yo zi) in the target coordinate
system and has RCS of Si‘ Both the location and RCS of each scatterer
are assumed to be aspect angle dependent, where the aspect angle
dependence permits the scatterers to bz shadowed or disappear from
view. Fach scatterer is assumed to be independent of the others, and
only single reflections are considered. This admittedly ignores such
rhenomena as interior corners and ducts, but these are considered to bé
of relatively minor importance statistically, Polarization sensitivity
can be included but the derivation of the scattering equations assumes
polarization independence, primarily for convenience.

It has been shown by Dunn and Howard [ 28] that glint computed by
taking the normal to the phase front is the same as the glint computed
by the ratio of the nonradial and the radial components of reflected
power, This is true for all currently used angle tracking systems.

The approach used here utilizes the Poynting vector representation

of the reflected power. The EM vector backscattered from each of the
M scatterers is computed and these are summed vectorially. The
Poynting vector is then calculated and decomposed into three orthogonal

components. The first component is radially directed from the target
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to the radar. The other two components are, for convenience, the

azimuthal and elevational components in the target coordinate system.
The radial component of the Poynting vector is related to the RCS and
the nonradial components are related to the glint errors. The results

for the scattering parameters are derived in Appendix A and are given

S = Z Z J—— coc( -aj) (2.4)

i=1l j=1

M
€ ---l z 2./ iS f21°°s(1'aj) (2.5)

? S jal gal

1
¢ = 1.2'11 j§1*/ § Sy £y cos (ozi - aj) (2.6)

wn

M
/Z \/_S;sinai

PHAS = atctan‘\ i=]

(2.7)

Z,/S cos o

i=1
where & and eQ are the errors in the target coordinate system, 6 and

@ are the target aspect angles, and
a__{&_g =%, 8in @ cos ¢ - sing sing - 2, cos @ (2.8)
1% \M ¢ =¥y =2 .
fli = =X, cos 6 cos g - yy cos o sin ¢ = 2z, sin 6 (2.9)

fy; = =x; sing + y; cos ¢ . (2.10)

The eq,\ and € errors given in (2.5) and (2.6) must be transformed

to azimuth and elevation errors, AZER and ELER respectively, in radar

coordinates to account for the orientation of the target. Let
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8in 0 cos ¢ sin @ sin ¢ cos 6

[(D(6,p)] = | cos 6 cos ¢ <cos 6 sin ¢ =-sin 6 (2.11)

- 8in ¢ cos @ 0 .
Then, the azimuth and elevation errors are obtained from
" e ) 0 |
ELER |~ |D T ot
= (2 (00 o)||T [PTC @ [ | 22
LAZER.- ecp

¢ is a dummy variable, and [T'll is [T-I] with the mean values of Q,
B, and y substituted for @, B, and ¥y, For straight and level flight

where the mean pitch and roll angles are zero

[

0 0
1|1
[D(eo, q)o)][T ][D @, q;):|= 0 1 0
0 0 1
and (2.12) yields
AZER ~
‘o
ELERz ea . (2.13)

In order to derive the Si and (xi, ¥y zi) of each scattering
element, the target is modeled by M ellipsoids,

2,3 Ellipsoidal Surface Model

It is assumed that the surfaces of the target can be approximated
by ellipsoids, as depicted in Figures 2.2 and 2.3 for a target drone
BQM=-34A, Ellipsoids‘were chosen because of the rclative ease with
which one can find and describe the scattering from the specular point,
Each ellipsoid is described by its conjugate radii and its position

and orientation in the target fixed coordinate system., An associated
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The BQM-34A Target Drone

Ellipsoidal Model of BQM-34A Target Drone
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Figure 2,2,
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modulating function is defined for each ellipsoid which truncates the
ellipsoid, approximates the shadowing by the other surfaces, and
provides a relatively smooth transition into the field of view, It

may also be used to provide an empirical method of improving the fit

TR ER R RV EPNGIIRRIPE R AUGEIRSEEAE

| S~ 7R R, (2.14)

of calculated to empirical data. Each ellipsoid may be considered as
§ a point scatterer with RCS, Si’ and location (xi, Yyo zi), determined
g by the specular point [41, 42],
; First a single ellipsoid located at the origin with its principal
% axes oriented along the Cartesian coordinate axes is considered. The
g i RCS of such an ellipsoid is given approximately by
:

where R1 and R2 are the principal radii of curvature at the specular
point [41]. The specular point is found by finding the point on the
surface of the ellipsoid having the same direction cosines as the

lines of sight,

Let
; 2 2 g2
F(x,y,z)=-—2+L2+-§--1=0 (2.15)
a b c

be the equation of an ellipsoid. Then the normal to the ellipsoid at

(x, y, 2z) is given by

>

¥ = L (2.16)
(o]

L+

ol
Tl

[+

so that the direction cosines of the normal are given by

X
6x 2
a’r
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However, the direction cosines for the line of sight are given by

cos & = sin 6 cos ¢
cos By = gin 6 sin ¢

cos 6z = cos O (2.18)

where 6 and ¢ are the aspect angles of the ellipsoid given in its own
{local) coordinate system. The ambiguity of the normal can be resolved
by noting that the outward normal must be in the same octant as the
line~of-sight. Thus from (2.17) and (2.18) the parametric angular

coordinates, ug and Vg of the specular point are obtained as

: ton o]
vs arctan{ a tan ¢

ug = arctan{% tan 6 /az cos2 o + b2 si.n2 ) } . (2,19)

The product of the principal radii of curvature, Rl X RZ’ is

derived as in [41] by

e @) ol

1
specular
point (2.20)

where
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2 % o oF
sz oxdy Oxz  ox
% %k % ¥
Ry 32 ¥z Oy
A= (2.21)
e -
oxdz  dyoz 322 dz
oF OF oF 0
x Jdy oz :

The application uf (2,20) to the ellipsoid (2.15) results in the

expression
2 22 2
R, R2=a2 b2 o2 S22 (2.22)
a b c

where (xs, Ygs zs) are the coordinates of the specular point and are

given from (2.16) by:

2
a
X, = a sin ug cos v = > sin 6 cos ¢
b2
Yg = b sin ug sin v, = E; sin'6 sin ¢
c2
Z =¢ccosu ==—cos (2.23)
s s p
where
p -\/[;2 sinz 2 cos2 o+ b2 sin2 0 sin2 o+ c2 cos2 0 .

Consequently, the RCS of the ellipsoid may be found from (2.14) and

(2.22) to be given explicitly by

S=1R, R, =

1 Ry (2.24)
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The results given in (2.23) and (2.24) for a single ellipsoid may now
be applied to each of the M ellipsoids, after the proper coordinate
transformations,

Consider now an ellipsoid which has its center located at
(xti’ Yeis zti) in the target coordinate system. A local coordinate
system for the ellipsoid is defined, with the origin located at the
center of the ellipsoid and with the coordinate axes coincident with
the principal axes of the ellipsoid, . Under these conditions the
ellipsoid is given by (2.15). The angular rotations from the target
coordinate system to the local coordinate system are defined as et and
@ps Where @, is taken first about the z axis and then 6, is taken about
the new y axis,

Let x, y, and z be the coordinates of a point in the target
fixed coordinate system, and let x', y', and z' be the coordinates of
the point in the local coordinate system. Then the coordinates of the

point are related by the following transformation:

' -
X X xti
y'| = [Ty ~yy (2.25)
2! 2 -2z,

where

-
cos @, cos 6, sin @, €08 6, -sin et

[T) = | =sin ¢, cos @, 0

cos g, sin 6,  sin ¢, sin 6, cos 6, .

Let 6 and ¢ be the aspect angles of the target and (xo, Yoo zo)
be the coordinates of the point on the unit sphere with these angular

coordinates, then

et
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X, sin 6 cos ¢
Yo| = sin 6 sin ¢ (2.26)
zo cos O R

If r, s, and t are the coordinates of this point in the local coordi-

nate system of the ellipsoid, then

r sin 6 cos ¢
s |= [T] |sin 6 sin ¢ (2,27)
t cos 6

hence the local aspect angles can be found from
s
9 = arctan(-;)

Gi = arctan(% r2 + 32 ) . (2,28)

The octant in which the angles are located must be determined hy
consideration of the signs of r, s, and t,

2.4 Computational Procedure

Let 6 and ¢ be the target aspect angles; 9i and g be the local
aspect angles of the i-th ellipsoid; eti and Py be the angular trans=-
lations from the target coordinate system to the local coordinate
system for the i-~th ellipsoid; (xti’ Yeis zti) be the location of the
center of the i-th ellipsoid; (xi, yi, zi) be the coordinates of the
specular point in the local coordinate system of the i-th ellipsoid;
and Xis ¥y and z, be the coordinates of the specular point of the
i-th ellipsoid in the target fixed coordinate system.

The starting point for each computation is the set of target
agpect angles 6 and . For each of the N ellipscids, the following

procedure is used:
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(1) Transform from target aspect angles to local aspect angles
using (2.28).

(2) Determine the location of the specular point in the local

BRI

coordinate system using (2.23).

(3) Determine the RCS, Si, of the specular point using (2.24).

o AR AR B
RSN P e

fibe

(4) Transform the position of the specular point from local

EARLIIRS

coordinates (xi, yi, zi) to target coordinates (xi, Yy zi) by

O3 oA

X x! X

4 i i ti

e - -1 '

: Yy [T ] Vil * Vet

/: ,

' . 1 % Zed .

- 4 e
TRAPIIE R T

(5) Determine the magnitude of the modulating function G(i) and

the value of the RCS to be used in (2.4) through (2.7) by

RIS Yiss Cnn
J.ys-(;‘- el

v e

‘ , S, = G(1) 8/ .

o
R

The values of the scattering parameters for the aspect angles 6
and ¢ are found by applying (2.4) through (2.7) where the location
(xi, Yys zi), and RCS, Si, of the i~th scatterer are determined as
described above.

2.5 Numerical Example

>
e AN G TN TS A A N &

The results of the last three sections will now be applied to
the special case of the BQM-34A Target Drone, Figures 2,2 and 2.3

depict the actual Target Drone and the ellipsoidal approximation, The

SARY (LAY S 1
xR

: ellipsoidal model in this case consists of eight ellipsoids, The

i 2

configuration (as defined by the conjugate radii), location (xt, Yo

;T

CNEOECET

zt) and orientation (9 ) for each ellipsoid is given in Table 2.1.

t* P

CEe

The modulating functions for these ellipsoids are given in Table 2.2,
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The procedures derived in Sections 2,2 and 2.4 are used to compute
the scattering parameters as functions of th~ aspect angles, 6 and ¢.
Typical results are shown in Figures 2.4, 2.5, and 2.6.

Figure 2.4 1s the calculated RCS for L-Band plotted in decibels
referenced to l-square meter (RCSdBM) versus yaw angle for zero roll
and zero pitch. Zero yaw angle corresponds to nose-on, 90 degrees
corresponds to broadside and 180 degrses corresponds to tail-on, As
compared to measured data, the calculated RCS in the angular regions
from 0 to about 35 degrees and from about 140 to 180 degrees is low.

In the headon region the discrepancy is about 15 decibels and in the
tail-on region about 10 decibels. These discrepancies are due largely
to two factors. The first factor is the simplicity of the modeling
approach used. The second factor is the transparency of certain parts
of the target drone. The analytic model ignores the engine intake and
exhaust ducts thereby ignoring significant scattering over certain
aspect angles., The data on which the comparison is based were measured
on a target drone with considerable transparent portions. In addition
to éhe radome, the front cowl forward of the engine is transparent,
Therefore, the RCS within about 35 degrees of nose-on is the RCS of the
bulkheads, forward engine structure, autopilot and electronics packages,
and other components. The end of the tail cone which houses the
recovery parachute is also transparent. These factors make a comparison
extremely difficult. However, the lobing structure is approximately
correct as is the broadside RCS.

Figures 2.5 and 2.6 are the azimuth and elevation errors, AZER
and ELER respectively, expressed as the linear error at the target.

The conditions are identical to those for Figure 2.4,
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3. THE STATISTICAL PROPERTIES OF THE SCATTERING PARAMETERS

3.1 General

The primary objective of this research has been to develop tech-
niques for computing the statistical parameters of a radar target, in
particular an aircraft type target. These data can be used to
generate a vector stochastic process representing the radar scattering
parameters of the target which can be used in system simulations and
evaluations, The data may also be used in the design of optimum
filters for tracking systems.

Section 3,2 derives the statistics of the aspect angles using
approximation techniques, Section 3.3 applies the aspect angle
statistics to the analytic scattering model developed in Chapter 2
to derive the statistical properties of the scattering parameters.,

3.1.1 The Statistical Properties Under Investigation

The available techniques for obtaining a dynamical repre-
sentation of a stochastic process require that the probability density
function and autocorrelation function be known, and that these functions
satisfy certain criteria. These techniques can be generalized to N
dimensions, when the matrix of covariance functions is known. One
general approach requires only that the probability density function
have finite variance and that the covariance functions be written as

sums of exponentials,
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The RCS, AZER, and ELER are complicated nonlinear functions oS
the aspect angles as indicated in Chapter 2 so that the conventional
transformation of variables approach to obtain the probability density
function is impractical if not impossible. Therefore, other properties
of the probability density functions must be investigated, The most
descriptive properties which can be determined are the moments. A
complete description of a probability density function, in terms of its
moments, requires that all of the moments be known., For a Gaussiar
density, all of the moments can be expressed in terms of the mean awd
variance. These two moments are not sufficient, in general, to
characterize an unknown density function. However, computation of all
moments is not a practical undertaking so some compromise must be made,
A reasonable compromise appears to be the first four moments. The
third moment measures the skewness or asymmetry and the fourth moment
measures the shape of the distribution as compared to the Gaussian
distribution,

These moments can be used to approximate the fit of an unknown
probability density function by use of known techniques including the
use of Gram-Charlier series [57] where the unknown density functions
do not differ markedly from Gaussian density functions or those
derivable from Gaussian density functions. Another technique is
described by Wragg and Dowson [58] for density functions on [0, =),

The statistical properties of the scattering parameters under
investigation, then are the first four moments and the matrix of
covariance functions, Since it is not possible to assign probabilis-
tic properties to a target trajectory, the statistics to be derived are

all for a given trajectory. Therefore, the moments and the correlation

uindy
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functions are defined as conditional expectations given the flight
path in the ground fixed coordinate system.

3.1.2 The General Approach

The time history of the scattering parameters of an air-
craft cannot be represented by a stationary process. The means and
variances of the scattering parameters are time-varying functions of
the aspect angles 6 and ¢, which are in general functions of the
trajectory and hence of time. The relationship among the aspect angles
and the target position and attitude in the ground fixed coordinate

system are given by

sin 6(t) cos o(t) -sin eo(t) cos wo(t)
sin 6(t) sin ¢(t) | = [T(t)] -sin eo(t) sin ¢o(t) (3.1)

cos 6(t) ~Ccos eo(t)

where [T] is given in (2.3).

The target coordinate angles eo(t) and wo(t) describe the target
position in space as measured in the ground fixed coordinate system,
The Euler angles, @, B, and 7, appearing in [T] are functions of the
target motion, making the [T] a function of time for a known
trajectory. Let a(t), B(t), and 7(t) be the Euler angles corresponding
to a given target trajectory (position, velocity, and acceleration).
If these are substituted in [T] in (3.1) the resulting 5(t) and E(t)
are then purely deterministic functions of time, However, in general,
the Euler angles @, B, and 7 contain a stochastic component due to
perturbations in the motion, wind, vibrations, etc. For simplicity

it may be assumed that.ithe stochastic components of o, B, and y are

additive with zero mean and exponential autocorrelation function.
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Therefore, a(t), B(t), and y(t) are assumed to have time varying

means T(t), B(t), ¥(t) and autocorrelation functions,

-k |t -t |
-\ - 2 27t
Rv("l’ tZ) i "(tl) ”(‘2) +a, e’ » (.2

v=20, B, 7 .

The perturbations have generally small time constants as compared to

the time constants of aircraft trajectory. Consequently, o(t), B(t),

/RS L T

$iiL

o amae w e A Vapm

and 7(t) may be considered to be wide-sense stationary for |t2 - tll

small enough. Now 6(t) and @(t) in (3.1) are given by time varying

Aetsaiariss

nonlinear transformations of &, B, and y. Since the time constants of

e+ —— g ————

L the stochagstic components are small compared to the time constants of

the trajectory, and hence of the transformation, it can be shown that

T
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‘ 6(t) and o(t) are therefore time varying random processes whose means

and autocorrelation functions have the form

E(6(t)) = B(t) ~ 8(t)

B Y R Y P €

E{p(t)) = o(t) =~ P(t) (3.3)
R, (t:l, t:z) - E(tl)'é'(cz) + oe(tl)oe(tz)pe(tz - t:l)
R, (tl, ty) = $(t1)$(t2) + o(p(tl)ow(tz)p(p(tz - t:l) . (3.4)

Here, it has also been a.. med that the stochastic perturbation of the

o M WA e
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3 Euler angles are relatively small. Consequently for a given flight
' }
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path, 6(t) and @(t) have time varying means and variances. Further-
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more, if |t2 - tll is small, then their covariance is approximately
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C(t t zozt t, = t
ol 12 2 ol“1)P{ "2 1

cq>(t1' tz)z O’;(tl)p(tz - tl) (3.5)

while for large |t2 - t1| they are uncorrelated. Similarly, for

Itz - tll small enough that o(t, - t,) is not negligible, a(tl) ~ 5(:2)
and'a(tl) = E(tz). Hence, they are wide~sense stationary for suffi-
ciently small time intervals.

The approach to estimating the aspect angle statistics is to
expand the implicit expressions for 6 and ¢ contained in (3.1) about
the deterministic values § and 5 which are obtained by substituting
Q, B, and 7 into (3.1) for @, B, and 7. The order of the approxima-
tion will be reduced to the minimum acceptable level.

3.2 Aspect Angle Statistics

The derivation of the statistical characteristics of the aspect
angles, ¢ and o, requires a knowledge of the target position in the
ground fixed coordinate system and the target motion in each of its
6 degrees of freedom. The translational motion is specified in the
ground fixed coordinate system. The angular motion is more difficult
to define but relates the angular position of the target fixed
coordinate system to the ground fixed coordinate system, Neglecting
any random angular motions it is assumed that the target flies with
its longitudinal axis, x axis, coincident with the velocity vector
and its vertical axis, z axis, opposing the combined acceleration due
to gravity and any maneuvers other than longitudinal acceleration,
(This approach clearly ignores aerodynamic theories related to flight
[59] but permits a reasonable analysis without requiring a detailed

aerodynamic model of the target.,) The yaw, pitch, and roll angles,
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o, B, and ¥ respectively, required to go from axes parallel to the

PTG

ground fixed Cartesian coordinate axes to the target fixed Cartesian
coordinate axes are shown in Figure 3.1.
Let x', y', and z' be the Cartesian coordinate axes of the ground

fixed coordinate system and x, y, and z be the Cartesian coordinates

! of the target fixed coordinate system., As defined previously, (1) the
: x axis is the longitudinal or roll axis of the target with the velocity
i vector pointing in the positive direction; (2) the y axis is the pitch
axis; and (3) the z axis is the yaw axis., The yaw, pitch, and roll

é angles (Euler angles), &, B, and y respectively, are defined such that
§ ¢ and ¥ are conventional right-handed angles, but 8 is left~handed.

Let x*, y*, and z* be the intermediate axes during the sequence of
angular transformations from one coordinate system to the other. The

) transformation between coordinate systems is unique only when the order
of the angular transformations is defined. In this work, the order

is defined to be B, y, and @, in that order. Figure 3.1 depicts the
angular coordinate transformation from the ground fixed coordinates to
the target fixed coordinates. The first rotation is p about the y'
axis, the second rotation is y about x*, the intermediate x axis, and
the third is « about the final z axis.

1 The aspect angles are related to the target position and motion by
(3.1) where [T] is defined in (2.3). If the « rotation is factored

out of ¢, it is noted that o is additive to ¢ resulting in a simplifi-

cation of the algebra.

cosa sina O cos B 0 sin B

3.6
[T] = |-sina cosa O |{-sin B siny «cosy «cos B siny 3.6

0 0 1 {jsin B cos y =-siny cos B cos ¥




Angular Transformations from Ground Fixed

to Target Fixed Coordinates

Figure 3.1.
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It is possible now to find an exact analytic solution for the

joint probability density function for 6 and ¢, as given in Appendix

BRI N AN s

B, Clearly the equations in the right hand matrix are nonlinear and

LI

do not permit a visualization of the results even when the density

functions for a, B, and y are given, Numerical results can be obtained

Loty 2y

by implementing standard transformation of variables techniques on a
digital computer. An even more formidable limitation exists, Although
it is possible to obtain the moments by numerical integration, it is
not possible to obtain the covariance functions for ¢ and ¢ which are
necessary in computing the ccvariance functions of the scattering
parameters,

The aspect angles 0 and ¢ can be expanded in Taylor series about
their quasi-means F(t) and'&(t). For notational convenience, the
time dependence of the means and variances is being dropped from the

notation for the rest of the analysis, If variances of the random

components of the Euler angles are sufficiently small, 6 and ¢ can

be approximated by the first two terms of the Taylor series expansions,

32
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~ 20 0 %
9z6+Bs 3R l——+7sa7 '_ +B878m _
By By Byy
2 2
+Lgfog 1,298 (3.8)
B |35 % 57
Byy B»7

:t where
3 Q =0-0
W 8
B, =B -B
2
Vg =7 =7 -
) By use of implicit differentiation and algebraic manipulations the
2.
partial derivatives can be shown to be:
\ érg __ = cos '7_ cos @ (3.9)
E: By
5
| 3% 1 - .~ 1 - N 2w
-—2-| = 7 8in 2y sin ¢ + 5 (1 + cos 2y) cot 6 sin” ¢
i Byy
b,
3 ége = sing (3.11)
é:j E’;
2
3 98 l = cot § cos® ? (3.12)
9 " |5y
3 829 = = cos o (sin '-y- - co8 ;" cot 6 sin ~) (3.13)
4 By ‘_ - ? ? ’
By
'(..

. ', L R T I ek Vs s T T ST § s RIS G g0 2 e e
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a - - ~ ~
5% ' = - giny - cos y cot 8 sin ¢ (3.14)
Bsy
-a-—g l =3 sin 2y cot 6 cos ¢ + @ sin 2¢(1l + cos 2y)(1 + 2 cot @)
B - -
Bsy (3.15)
% ‘ = cos ¢ cot 8 (3.16)
Byy
32 1, 2
=2 ‘ = - 3 sin 2p (1 + 2 cot” §) (3.17)
7 |8y
p2 -~ 2 ~ 2~ ~
33%' = 8in y 8in ¢ cot 6 - cos y (cos” ¢ + cot 9cosng).
By (3.18)
The accuracy of these expansions may be examined by obtaining the
statistics of the resulting series:

'9-=E{9]==5+%-0'; [sin27sin:f:+ 1+c0327>cot531n25]

B ¢ A B T 3

+ oj cot 3 cos? [ (3.19)
i - 2 et 25 cor 5 eos X
'|'=E{q)]z(p+'2‘06 sin 2 y cot 6 cos ¢

+'2Lsin25(1+cos27)(1+2cot'§)]

-4 o: sin 2 3 (1 + 2 cot? 5) (3.20)




G 2 =\2 2 2= 2~ 2 2~

E OG-E{(G-G) }=06cos 7 cos cp+07 sin” ¢

3 ' + 9g 9y cos” ¢ \siny - cos y cot € sin ¢

;.
? E 1 4 - ~ - ~ 2 ~ 2

: +an[sin27sincp+(1+c0827)cotesin [

4 !

. o;' cot? § cos? (3.21)
t -

4
i 2 -\ 2l 2 2 - - ~ ~ 2
a(p = E{(cp - cp) = 0o + O (sin 7 + cos y cot 6 sin @)
+ o2 cot? § cos? ¥+ 0% o [sin Y sin @ cot &
i 4 By

: - 2 ~ 2 ~ ~ 2
4 - cos ¥ (cos” o + cot” 6 cos 2 q\)]

4 +zoB[sin27 cot 6 cos p+ 5 8in 2 o (1 + cos 2 7)(1+2 cot 6)]
3 1 4 2.~ 2 ~\?

: + z O sin” 2 ¢ (1 + 2 cot 6) (3.22)
'\{ Y

| 0,0 = E{(0 - 6)( --)}=02 cos 7 cos g

: 6% 06’« P=Q ) ®

ly' L - ~ ~ 1 2 ~ ~

3 x(-siny-cosycotesinm)-l-foysinzmcote

8

f 1 4 - ~ b ~ 2~

3 +ZUB sin 2 ¥ sin o+ (1L + cos 2 y) cot 6 8in” ¢

26

X [sinZ y cot 6 cos m + %sinZ ® (L4 cos 27)(1 + 2 cot 2 3)]
3 - 0607 cos ¢ (sin 9 = cos y cot 6 sin o)

3 x[sin;sin'&;cot'é'-cos ;(cosz'&'>+cot2'5cos 2?{))]

i - %- o: cot § cos 2 ?psinZ P (1 + 2 cot? '5) . (3.23)
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Some knowledge of the statistics of the Euler angles is necessary
in order to establish bounds on the errors, and hence evaluate the
accuracy of the expansions.

There is, unfortunately, a lack of published or available data
on the angular motions of an aircraft in flight. An aircraft is
designed to fly and perform a mission safely. Oniy those flight
characteristics which affect safety or the ability to perform the
specified mission are investigated and reported. The small scale
random motions of interest here are generally ignored. The pilot, or
autopilot, can handle these as a minor part of the normal flight
activities, The coupling among yaw, pitch and roll, especially when
flying with the autopilot operating, is familiar to many. It would
seem reasonable, based upon this and other factors, to expect that the
quasi-random angular motions would be similarly coupled. However, the
lack of data make it impossible to determine what the coupling or
covariance function should be,

It is necessary to assume some probability and covariance
functions for the Euler angles, The most useful family of probability
density functions for angles is that used by Viterbi [60]. It is

given by

_exp (s cos 9)
fe(e) = o IO(S) ’ 0=6 = 2n (3.24)

where 6 is the angle and s is a parameter related to the variance of
the distribution, For s = 0, the density is uniform over the range
of =1 to 1, and for 8 = », the density is a delta function at ¢ = 0.
This density is closely approximated by a normal density for s >> 1,

a8 shown by Viterbi, Due to the lack of published data, it is assumed
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that the random angular motions of the target are independent normal
(Gaussian) processes with exponential autocorrelation functions. This
is an arbitrary and perhaps simplistic approach, but represents a
practical and mathematically tractable approach. The choice of a
normal process is based upon the fact that the random motions are
small, The only justification for the exponential autocorreliation
function is mathematical convenience.

For a basically stable aircraft under cruising flight conditionms,
standard deviations of the Euler angles of less than 100 milliradians
or about 5,7 degrees seem reasonable. Autocorrelation time constants
on the order of 1.0 to 5.0 seconds also seem reasonable,

Without loss of generality, but in the interest of simplifying the
algebra, it is assumed that the aircraft is flying a rectilinear flight

path, This implies that B =7 = O, and that 6 = _ and o = % * a.

0
From practical considerations, the area of prime interest in the
elevational aspect angle 6 is for /2 < @ < 3n/4, 1In this region

-1 = cot 6 = 0. With this information it is possible to evaluate the

general accuracy of the Taylor series expansions of @ and «, (3.7)

and (3.8). Equations (3.19) through (3.23) can be wsitten as:

g =286+ %— co. 8 (oé s:l.n2 5 + o: c032 5) (3.194)
5=5+%sin2?6(1+2cotzs)(c!g-»o:) (3.208)
2 2 2~ 2 2~ 1 22 2~ 2 .~
= . + =
Og = 0g €05~ + 07 sin” @ + 7 9T, cot” 6 sin” 2 ¢
+ cot2 ] (cg sin4 5 + 0: cosalé ) (3.21A)
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o;=ca +cot23(c; sin2$+ 072 cos® ?5)
22( 2« 2 ~y 2
+ 0.0 (cos © + cot 6cosZcp)
By
1 2, 2x\2( 4, 4
+ 7 sin 2(p(1+2cot 9) (cB+ 07) (3.224)

-]-_. ~ ~ 2 2)
ceo(ppe 0 =3 sin 2 p cot @ (07 OB

+ -;- cot § sin 2 ¢ (1 + 2 cot? 6)(0;' sin® o - o: cos? ?5)

- -% qgo: sin 2% cot § (c032 ?5 + <:<>t2 9 cos 2 ?ﬁ) . (3.23)

By inspection, it is clear that the second order terms generally add

less than 0.1 sup (o, Uy) to the means and standard deviations of the

B
aspect angles. First order (linear) approximations will be sufficient
for this analysis. The following equations will be used in the

computations later in this chapter.,
6 =06, + By cos%-l-‘ys sin @ (3.25)
®e gt o- Bs cot 6 sinm+7s cot 6, cos ¢ (3.26)

where © = g + Q . The means and covariance functions of the aspect

angles are given by:

8 =0, (3.27)
°= ro + a (3.28)
-k, T -k T
2 _2_ "% 2 .2 y
c (t,, t = e + sin e 3.29
9(1 2) 0g 08" o 9 (3.29)
-k T -k T
Cq)(tl, tz) = aé e ¥ 4 og c:ot:2 8o sin2 e B
-k T
+ 03 cot:2 8¢ cos2 P e 7 (3.30)
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-k T -k, T
1 - 2 y 2 B
ce’cp (tl, tz) = 2sin2 ® cot 90 (c7 e - GB e ) (3.31)

where 7 = |t, - t,| and ky kﬁ’ and ky are the inverses of the time
constants of the autocorrelation functions of ¢, B, and 7,
respectively. The linearization also implies that the joint density
function of 6 and ¢ i3 approximately Gaussian.

3.3 Statistics of the Scattering Parameters

3.3.1 Derivation of General Approach

The previous chapter and previous sections of this chapter
have developed the necessary background and inputs to the derivation of
tﬁe statistics of the scattering parameters. The following development
holds true for all of the scattering parameters, so only the RCS will
be mentioned., The application to the other scattering parameters.will_
be made when appropriate.

As mentioned in Section 3.1, it is not possible to obtain the
probability density function for the RCS using conventional transfor~
mation of variables techniques. Therefore, the first four moments of
the probability density function and the covariance functions will be
derived,

The characteristic function approach is to be used in the

derivation of the expectation as follows:

E(S) S E(SG,)) = E: = [ [a@medotye dudv}
(21)

1 jue+ vo) }
= A(u,v) E (e dudv
L5 ffrem s |

- 1
(22

ff AY) 8 o (u, v) dudv (3.32)
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where
A, v) = [ [ 56,0) 73O+ VD) 4 g (3.33)
is the Fourier transform of S(98,p), and 09 @ is the characteristic
?
function of ¢ and ¢. Similarly, for higher order moments, the
expressions become
r
ElsV=E 121‘ ([[A(u, v) ej(u9+ Vo) dudv)
(21)
.—.ii;ff...f A(ul,vl) ...A(Uz,vz)O(ul-i-...
(2n)
nih S ST SRR vr) X duldv1 .o durdvr (3.34)
and
Lg
() enfs[o(0): o sbe) o) |
.1 a”” A (l,vl) ( 2oV ) o, (ul,vl,uz,vz)
(21) 1°02:%1:%2
X‘du1 dvl du2 dv2 . (3.35)

Thus, the moments and the correlation functions of the scattering
parameters can be computed, at least in theory. From a practical
point of view, however, this approach appears to have the same diffie
culty as determining the densities using the transformation of
variables. The digital computer makes the computations of the moments
and the covariance functions possible,

The procedure used in the computational process is basically to
reduce the integrals to summations using approximation techniques.

The general steps are:
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(1) Compute the Fourier integral A(u, v) in (3.33).
(2) Compute the characteristic function cbe (p(u,v) which for the
’
assumption of a jointly Gaussian density for the aspect angles is

given by

j(au + Ev) - %: oguz + 2p9 Og 0 WV + ozvz)
¢ Cp(u,v) = e e 909 ¢

6,

(3) Compute the integral (3,32).

There are practical considerations which influence the detailed
procedures, which will be discussed as they are encountered.

It was shown in Section 3.2 that the conditional variances for 6
and ¢ are small, It is reasonable, therefore, to consider only the
portion of the ¢ = ¢ plane having a reasonable probability of
occurring. Let § and ¢ be the conditional means and 092 and o; be the
conditional variances of 6 and ¢. Let M be a positive integer. Then
the area of the plane having coordinates such that § - M % =9 =7
+ Moy and g = M % Sfop=9+M o, will be used for the actual
computations.

Now, let ST(G,(p) be a periodic function which is identical to

S, @) in the area defined above, i.e.,

- S -9 < - SpegS
Moe e -0 Mcre, Mo(p P =9 Moq) s

and .
S5y (e + 2KM. , o + 2£Moq’) = 5,(6,9)
for k, £ integers.
The periodic function ST(e,q)) instead of S(8,p) will be used in

computing the expectations. A bound on the resulting error in using

a finite M is found in Appendix C. A reasonable compromise seems to
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be M= 4 if ¢ and ¢ are assumed to be Gaussian. Since ST(G,@) is
periodic, it can be represented by its Fourier series,

© 0 jimu 6 + nv ¢)
5:0,00= L L A(mn)e o * ™o (3.36)
M= =00 N= =0
where
u. = =X
0 Phé
and
0
Yo = Mg '
U

Substitution of (3.36) in the expectation results in a discrete version

of (3.32).
-+

E{S}) ~ E z E A(m,n) e

MB =0 N= =0

j (muoe + nv 0“)}

0 o

= maz-oo nf-m A(m,n) ®e’cp(mu0, nvo) (3.37)
so the double integral in (3.32) becomes a double summation. The only
approximation made at this point is the substitution of ST(e,w) for
S(6,p) as mentioned above. In practice only finite number of terms
will be used in the summation (3.37). A bound on the resulting error
is also discussed in Appendix C.

Similarly (3.33) and (3.34) become, respectively,

I r o« o0 o0 [+
Els = z Z ¢« o 0 Z Z A(ml,nl) . . o A(mr’ nr)
m1=-¢° nlﬂ-oo mr=-oo nra-oo
r r
X 09,::)(“0 élmi’ Yo 121 “1) (3.38)
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E{slsz} = m% I I I Al(ml,nl) Az(mz,nz)

1=-oo nl=-oo m2=-oo nzs:-oo

®91,Q1,62’¢2(m1u0, myUys Vo, n2V6> .

(3.39)

Now, it is necessary to obtain the Fourier coefficients, A(m,n).
These will be estimated using the Fast Fourier Transform.

3.3.2 The Fast Fourier Transform

The Fast Fourier Transform (FFT) is a digital computer
algorithm for fast and efficient computation of the Discrete Fourier

Transform (DFT)[61, 62]. The DFT is defined by

N-1
1 =21
Ar = -N- IEO xn exp (—ENM) (3.40)

where Ar is the r«th coefficient of the DFT and Xy is the n-th sample
of the time series X, which consists of N samples. The inverse

transform is given by

N1 2tirn
X = ) A exp( S ) . (3.41)
n=0
One of the consequences of using the DFT is that both the time
series and the coefficients of the harmonic frequencies can be defined

for all integers (positive and negative). This results in the familiar

periodic form

R

The approximation of the Fourier Transform or Fourier Series by

by the DFT is not without its pitfalls and hazards., A distortion due
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to aliasing occurs in the frequency domain for real functions which
are not sampled at sufficiently high rates [62, 63].

In addition to the aliasing error, there is an error due to the
fact that the FFT acts like a bank of filters, each with a sin Nx/sin x
response, where N is the number of samples used (Appendix C). Let Br
be the r-th Fourier series coefficient of a periodic time function,

xT(t) = x(t), 0 £ t =T, then the FFT estimate, Ar’ of Br is given by

N1
A =i § B ej(m - r)( N )“ sin(m -~ r)n
N m

M= =0 sin(m - r)%

o0
= izim BiN . (3.42)

The error in estimating the Tourier transform of a non=periodic
function due to the "sidelobes" of the filter is called leakage [64].
The replacement of x(t) by its periodic version xT(t), as mentioned in
the previous section, reduces this error to the error introduced by the
harmonic components Bm outside the unambiguous range of Ar’ This error
is due to failure to satisfy the Nyquist sampling rate for the function
being analyzed. In the work here, the sampling rate is sufficient to
make this error insignificant.

The DFT and FFT, can be generalized to two dimensions. The two~

dimensional DFT is defined by

N-1 N-1
1 27t (xrm 4 sn)
Ar’s = =3 )Y Xon exp( s ) (3.43)

N” m=0 n=0
where Ars is the coefficient corresponding the r-th harmonic in one
dimension and the s-th harmonic in the other dimension, and Xn is the

m=th by n-th sample of x. In this case there are N samples in each

B IIST A B vors . _
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dimension of x and A, Just as in the one dimensional case, Ars and
X n €20 be defined so that they are periodic functions, but in each

dimension, i.e.,

br,s = e on = Arim,s = SoeNyen

mon © FmyntN T *meN,n T FmeN, mN
The inverse transform is defined by
N-1l N-1 .
X = L L A exp (Z’_‘_ﬂr;‘_"‘_ﬂl) . (3.44)
’ r=0 s=0 °°
The two~dimensional FFT is used to obtain the coefficients necessary
to compute the moments and covariances in (3.37), (3.38), and (3.39).
The characteristic function is computed directly by assuming that ¢
and ¢ are jointly Gaussian random processes.,

3.3,3 Practical Limitations

A slight regression is in order at this point to aid in
visualization of the problems encountered in actually implementing
these equations. Equations (3.37), (3.38), and (3.39) represent a
rather significant problem in terms of the capacity of a computer,
i.e., in terms of wemory capacity and number of operations required,
By proper choice of the origin, the characteristic function can be
made a real function. The coefficients of the two dimensional trans-
form, however, are generally complex functions., If N = 128, then
there are 16,384 real numbers required for the characteristic function
and equally as many complex numbers required for the A in (3.37). In
terms of memory requirements, the characterisitic function requires

16,384, . = 40,0008 words in memory and the A requires 32,76810 =

10
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100,0008. This represents a significant portion of the resources of
even a large scientific computer., Even more significant, however, is
the number of operations, or iterations implied by the multipie sums,

Assume that (3.37), (3.38), and (3.39) are to be implemented ss
written, which is to say by brute force. Equation (3.37) would
require 16,384 iterations, (3.39) would require 268,435,456, and (3.38)
would require (16,384)r where r is the moment desired. If each
iteration required 1 microsecond (an optimistic estimate), a second
moment would require about 268 seconds, clearly an unreasonable
length of time for one number, It is possible, however, to
significantly reduce this time, but higher order moments are clearly
beyond consideration using this approach.

It is shown in Appendix C, that for the data used here, the size
of the arrays required for the Fourier coefficients can be reduced by
a factor of approximately 4., This means that the number of iterations
required for (3.37) is also reduced by a factor of about 4. The
reductions are more significant for (3.39). The four-dimensional
characteristic function requires only about 1/16 of the original memory
requirements and only about 1/16 as many iterations are required.
Further reductions in computation time are possible due to the rate at
which the characteristic function converges toward zero.

The third and fourth central moments are also desired to
characterize the probability density functions. These are more
appropriately calculated using numerical integration techniques. Use
of numerical integration provides the moments by using only N2
iterations. For rectangular (Euler) integration, the moments are

computed by
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r N-1 N-1 r
E{s }= X L S (mAg, nAp) £, (M9, np) 26 29 (3.45)
m=0 n=0 P
where
2Mo,
0
A6 =—g
and
2Mo
&p = = ’

and where the coordinates have been shifted appropriately. The first
two moments computed using rectangular integration have been compared
with those computed using (3.36) and (3.38) with excellent results.

3.3.4 The Computation of the Statistics

The previous sections of this chapter have developed the
techniques for the computation of the statiscical characteristics when
the aspect angles are joircly Gaussian random processes and the
scattering parameters sre known. These techniques will now be applied
to the scattering model developed in Chapter 2,

The application to the moments and the covariance of the radar
croc~ section, S, has already been discussed in Section 3.3.l1. The
azimuth and elevation errors given in (2.5), (2.6), and (2.13) will
now be discussed. Consider (2.5), (2.6), and (2.13). The azimuth and
elevation errors, AZER and ELER, are obtained by dividing the nonradial
components of power by the radial component of power. This means that
the correlation or covariance between RCS and AZER or RCS and ELER
will, in general, be small since AZER and ELER are bipolar functions

with small means. In fact

M M
E{S x AZER}=E{ %, 72 /S.8, f,, cosfa, = (3.46)
{ } { i=1 j::l i j 21 ( i j)}
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M M
E{SXELER})=E{ Y Y /sS.s. f -, )} .(3.47
{ * } {1=1 v 13U cos(ai o‘J)} (3.47)

Therefore, more meaningful variables are the nonradial components of
normalized power instead of AZER and ELER, i.e., the numerators of
(2.5) and (2.6), namely

M M
A ——
€ = 131 j§1 fsisj £14 cos(ozi - aj) = S X ELER (3.48)

M M
P
€ = 1§1 jEJQ/ Sisj f.21 cos (Oti - j)= S X AZER . (3.49)

The statistics of these two functions and S have been computed for
a number of different conditions. Sample points on a straight and
level flight were selected and combinations of the variances and time
constants of the Euler angles were used to examine the moments and time
constants of these scattering parameters,

Figures 3.2, 3.3, and 3.4 are computer plots of S, €1 and €5
respectively, for the region of the @ = « plane for 1.5677 = ¢ = 1.7317
and -0.28241 ¥ -, < «0.12131. These data represent a region of *4g
from the mean in each direction for 8 = 1.6497, T = =-0.20186, gy =
0.02050, and om = 0,02014, If the variances are reduced by 1/4 these
data represent a region of +80. Table 3.1 contains the moments of the
scattering parameters, S, € and € for the two different conditions.
It is clear that the moments of these scattering parameters are highly
sensitive to the statistics of the aspect angles.

Chapter 4 presents data from a number of sample points on the

flight path with different sets of conditions on the Euler angles,
The results of the analytic solutions are compared with the results

of simulation to verify the techniques derived in this chapter.
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Figure 3.2. The Radar Cross Sectiuvs, S, Versus the
Aspect Angles
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Figure 3.3. Scattering Parameter (1 Versus the Aspect Angles
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4, COMPARISON OF ANALYTIC SOLUTIONS AND SIMULATIONS

4,1 General

A straight and level incoming flight path with a small crossing
angle was selected as being typical of the conditions of interest.
Three sample points on this flight path were selected at which compu-
tations of the statistics of the scattering parameters were to be
calculated, Figure 4.1 depicts the flight path and the sample points.
The coordinates of the three sample points are (30, 10, and 2.5 km),
(20, 4.238, and 2.5 km), and (10, =-1,524, and 2.5 km). 1In order to
investigate the sensitivity of the scattering parameters to the
aspect angle statistics, three different combinations of Euler angle
svatistics were applied at each sample point, and the resulting aspect
angle statistics were computed analytically and by simulation.

Tavle 4,1 contains the data on the resulting aspect angle
statistics uvsed for each run., Figures 4,2 through 4.10 show the
scattering parameters for each of the three sample points as functions
of the aspect angles., The limits on 6 and ¢ are 4o for the
largest values of % and a(p at each sample point, Figures 4.2 through
4.4 represent S, € and €, at sample point 1; Figures 4.5 through 4.7
represent S, € an ¢, at sample point 2; and Figures 4.8 through 4.10
represent S, € and € at sample point 3.

4,2 Simulation Results

3 Y, - £y (SIS, ot & T 1240 ) AR "
2 o n A . L T - L= L b tad 1 - ) Bl 2
N NI N Y » - JEARERRZ LY oag, 5 n;ﬂs oy 5ot ¢t . 5 A

A simulation program ! 's been written which performs a Monte Carlo

simulation of the time history of the EM scattering. The simulation
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uses the same assumptions and models that are used in the analytic
solutions, except that the angular transformation is not linearized
about the mean aspect angles. The simulation is fairly general in
that the flight path, velocity, random motion statistics, and sampling
interval are input variables, The output data are 2048 time samples,
taken at 50-millisecond intervals, of each of the scattering parameters
and their statistics. The aspect angles statistics are also available
as output data, The simulation permits an investigation of many
characteristics not conducive to analytic solution. For example,
by changing the velocity it is possible to investigate the limits the
flight path and flight characteristics place on the assumptions used in
Chapter 3 regarding the wide-sense stationarity of the aspect angles.
Figures 4.1l through 4,19 are the outputs of the simulation for
run 6. Figures 4,11 through 4.13 represent S, €9 and €3 Figures 4,14
through 4.16 represent the autocovariances of §, €1 and €93 and
Figures 4,17 through 4,19 represent the cross-covariances of S and €5
S and €95 and S and
4,3 Data Comparison

‘.20

The statistics of the scattering parameters have been computed
analytically and from simulations for each of the runs defined in
Table 4,1, The means and variances of the aspect angles are given for
the linearized solutions and the simulations to indicate the general
level of errors encountered. Tables 4.2, 4.3, and 4.4 compare the
statistics of the scattering parameters for the nine runs actually
made, Figures 4,20 through 4.37 cumpare the covariance functions for

runs 1, 6, and 9,
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It is clear from the data that the statistics of the scattering
parameters are very sensitive to the statistics of the aspect angles.
Some of the differences between the analytic results and simulations
can be explained by the apparently small differences in the means and
variances of the aspect angles. More important than the differences
are the similarities between the sets of data. It indicates that the
general approach will permit the analytic determination of the statis-
tics of the scattering parameters with some degree of accuracy.

The sensitivity of the scattering parameters to the statistics of
the aspect angles emphasizes the need for actual data on the flight
characteristics of aircraft., This may become even more important when
higher frequencies are used since the lobing structure of the

scattering parameters increases with increasing frequency.
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SAMPLE POINT 1
(30000, 10000, 2600)

SAMPLE POINT 2
(20000, 4238, 2600)

SAMPLE POINT 3
(10000, -1624, 2500)

FLIGHT PATH

Figure 4.1, Target Flight Path in the Ground Fixed
Coordinate System
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Figure 4.2, The Radar Cross Section, S, at Sample Point 1
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Figure 4.3, Elevation Component of Nonradial Power,
el, at Sample Point 1
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Figure 4.4, Azimuth Component of Nonradial Power, €1
at Sample Point 1

Figure 4.,5. The Radar Cross Section, S, at Sample Pciat 2
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0.03
€
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Figure 4.6, Elevation Component of Nonradial Power, ¢ ,
at Sample Point 2 1
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Figure 4.7, Azimuth Component of Nonradial Power, €95
at Sample Point 2
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Figure 4.8. The Radar Cross Section, S, at Sample Point 3
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Figure 4.9. Elevation Component of Nonradial Power,
€, at Sample Point 3
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Figure 4,10. Azimuth Component of Nonradial Power, €)s
at Sample Point 3
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TIME (sec)

Radar Cross Section, S, Versus Time
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TIME (sec)

Figure 4.12, Elevation Component of Nonradial Power,
3] Versus Time
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Figure 4,14, Autocovariance of S Versus Delay Time
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Figure 4,15. Autocovariance of 3 Versus Delay Time
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Figure 4.19, Crosscovariance of S and ¢; Versus Delay Time
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5. SUMMARY, CONCLUSIONS, AND APPLICATIONS

é 5.1 Summary and Conclusions i

The objective of this research has been to develop techniques for ;
the analytic calculations of the statistical characteristics of the EM
scattering parameters of airborne radar targets. In Chapter 2, a
deterministic modei of the EM scattering is developed and applied to
an ellipsoidal model of a target drone. In Chapter 3, techniques are
derived to compute the conditional statistical characteristics of the
scattering parameters. These statistical characteristics are
conditional on the target flight path since the mean aspect angles are

dependent only on the flight path with respect to the radar, Chapter

4 compares the analytically computed statistical characteristics at

three sample points on a flight path with results of a Monte Carlo
siuulation. At each sample point three sets of Euler angle statistics
were applied to investigate the sensitivity of the statistics of the
scattering parameters to the statistics of the aspect angles. The
results indicate the validity of the approximations used, at least for
the selected target and flight path.

The prime objective of developing techniques for analytic calcu-
] lation of the statistical characteristics of the EM scattering param-

eters has been accomplished. The ability to examine the statistical

relationships among the scattering parameters will be of great value

in designing tracking filters and evaluating system performance against
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other than ideal targets. Furthermore, the deterministic model of the
scattering parameters may aid in the understanding of the scattering
phenomena and their effects on radar systems.

The secondary objective of identifying areas where existing data
or theory does not support the general application of the primary
objective has also been accomplished. The number of problem areas
exceeded expectations. The ability to model the EM scattering from
relatively simple geometrical shapes is limited. Most aircraft are
made up of large numbers of not so simple geometrical shapes which
cannot in general be accurately modeled by quadratic surfaces, circular
cylinders or flat plates. It is essential that key reentrant structures
such as the engine ducts be modeled since these represent primary
scattering centers in certain regions of aspect angles, in fact, for
many aircraft they are the largest backscattering elements sn the entire
sector within 45 degrees of nose-on. The inclusion of bistatic angles
and the effects of polarization will add additional complexities to an
already complex problem.

The almost total lack of measured data on random aircraft flight
characteristics i{s one of the most surprising facts encountered. These
data are necessary to improve the accuracy of the results,

Measured glint data are extremely limited and do not exist on
targets of interest for air defense systems. Therefore, an evaluation
of the general accuracy of the calculated glint data is limited to

empirical judgment.
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5.2 Applications and Recommendations

The results of this research have several applications in radar
tracking of aircraft. Two of these applications are:

(1) 7The statistics of the radar scattering characteristics may
be used in radar system simulations and evaluations. Present simula-
tions and analyses either ignore the target induced errors or assume
that they are independent additive processes., It is shown here,
however, that the target induced errors are not independent, but that
they are correlated with the RCS and each other. More accurate simula-
tions may result from more accurate modeling of the target induced
effects and the correlations among them. In order to further
simplify the application of the results to radar simulations,
additional work should be directed toward the development of dynamical
models of stochastic processes having the desired statistics., Haddad
[65] presents an approach for dynamical modeling of separable Markov
processes, however, this may not be sufficient for some of the tar-
gets. More complicated techniques can be based on the works of Doob
[66]), Frost [67), Faurre [68), Kailath and Frost [69]), and Haddad
and Valisalo [70].

(2) The error statistics may be applied to the design of optimum
tracking systems. The usual approach to the design and analysis of
tracking filters is to assume that the measured errors are due only
to additive white noise, Typical examples of such analyses include
the works of Mosca [71], Sharenson [72], and Urkowitz [73]. With
statistical models of the target induced errors it will be possible to
generalize these works to more realistic conditions, including none

gaussian, trajectory-dependent, correlated noise.

N e e Foona a e ekt a3 M 0 B e oA AT
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Other applications include the investigation of the statistical
relationships of the scattering parameters for different polarizations
and different frequencies. Basalov and Ostrovityanov [32] and Ewell,
Alexander, and Tomberlin [74) have investigated the effects of
polarization on the radar scattering characteristics of a target and
the effects on angle tracking. More accurate statistical models would
be useful in this arca to evaluate the possibility of using polariza-
tion agility to aid in reducing tracking errors. The analytic model
developed in Chapter 2 can be generalized to include the effects of
polarization by us‘ng the works of Uslenghi and Lee [55}, Moll and
Seecamp [48], and Pierson and Clay [56]. Sims and Graf [34, 35] have
investigated the use of frequency agility to reduce rms tracking errors
due to target induced errors. Finally, a statistical analysis of the
frequency sensitivity of target scattering, using techniques developed
here, may be used to extend the work in this area.

5.3 Additional Efforts and Future Plans

This research is a portion of an ongoing task in the area of
airborne radar target signatures. Three tasks have been planncd to
help fill the gaps in data and theory as applied to this problem.

Other tasks are under development but requir~ coordination and concur-
reace of other agencies for actual implementation.

A contract effort is in progress at the University of Illinois to
develop solutions to the EM scattering theory for selected geometrical
bodies. These will be used first to develop a more accurate model of
the scattering from the BQM-34A target drone. Later these solutions
and others can be used to model the radar scattering from other airborne

targets of interest.
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Two radar scattering measurements programs are in progress which

will provide data to aid in validation and improvement of the analytic

ATRREEAY

solutions to the scattering problem. One measurement program is at
RATSCAT, Holloman Air Force Base, New Mexico. These measurements

include glint, monostatically and bistatically, in addition to the more

TR s O

conventional RCS measurements on the BQM-34A and BQM- 34F target drones.

s

NN L

The second measurements program is being done by General Dynamics,

Convair Aerospace Division, Fort Worth, Texas on the same target drones,

R

This program will use short pulse technology and sophisticated data

T

processing to identify the location and provide infoxmation on individual

TR

Eaftee

scattering centers. It is expected that these two measurements programs

will aid greatly in the development of more accurate analytic modeling

techniques,

The data desired on aircraft flight cheracteristics are essential

to the statistical modeling effort. However, any program to wake the

: necessary measurements will require the assistance of the Air Force or

; the Navy, or both. Development of actual data requixrements has not been
E initiated due to lack of time.

: The work reported here is of interest to all sexvices. Closer

1 coordination is planned in the future due to the ovexrlapping interests

and the expense involved in this type of research.
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APPENDIX A. FAR-FIELD M-BODY ELECTROMAGNETIC
SCATTERING EQUATIONS
A.l General
The following derivation assumes that, the target is composed of M
point scatterers and is i{lluminated by a linearly polarized incident
plare wave moving along the line of sight in the direction of the

target.

The Poynting vector for an electromagnetic field is given by

P = Re (E x H¥) (a.1)

where
P = Poynting vector
(E T+ET+ Ezi‘)ej“"
H -( ?+ azE’)eJ“"
w = angular frequency.
Figure A.l depicts the target oriented coordinate systems (polar
and Cartesian) and Equations (A.2) and (A.3) define the transformations

between these two coordinate systems.
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where

dll = gin 9 cos ¢
d12 = 5in @ sin ¢

d13 = cos 0
d21 = cos § cos @
d22 = cos 6 sin ¢

d23 = - gin @

d31 = = gin o

d32 = CO8 @
d33 = 0 (A.3)

The incident wave has electric and magnetic components given by

juwt

- -
?:mc -(Ee inc Y% + E(p {nc uq)) e (A.4)
and
- = Jwt
?inc - (HG tne Y + Hcp inc u(p) e (A.5)
wvhere
?inc = Re (?inc X Fl’i":m:) ’

The components of the electromagnetic wave scattered from the

i-th element, having cross section Si’ are expressed as

?ref - "/Ti- E’im: &.6)
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iref ==V 5 Ff:l.ru: A.7)
where
Pree™ " S Pine .

2
The units of Pref are watts and those of Pinc are watts/m .

A.2 Geometrical Computations

Let the source and observation point Q be located at (x, y, z) or
(R, 6, @) and the i-th scatterer be located at (xi, Yi» zi) with
respect to the target centered coordinate system. Then the observation
point is at (x = Xis ¥ = ¥ys 2= zi) or (Ri’ 6> q;i) with respect to
the shifted coordinate systems centered at the i-th element, and has

- -

unit vectors T"ri’ Uyys u(pi, in the local polar coordinate system
centered at the i-th element. The relations between the coordinates

are given by

ol

R; = [(x - "1)2 + (y - yi)z + (z - "1)2 J (4.8)

y- yi .
¢; = arctan| = %, A.9)
and
. z -z
91 = arccos R . (A.10)
i
= 2 o

The Cartesian unit vectors i, j, k are related to the polar unit
-
vectors u

i’ Tx’e g Tx:pi at the observation point by the transformation

—’
7 d
7 la [n‘;l] 2, (A.11)
-y
kJ ?cpi

where Di is obtained by substituting 84 and Py for 6 and ¢ in D,
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The reflected E field from the i-th clement mey be written as

- -
BB G+ Bot Yot

where the radial dependence is neglected. Hence, the transformations

(A.2) and (A.11) result in the following expressions for the components '

of the reflected field in the original system are given by

' -

Bri ur 0
' 21 . r -1 -

B, LD][Di J By W, (A.12)
' - -

Eq;i uq) Eq;i uq)i .

If it is assumed that R >> / xi + yf + z: » then 6;=6: 94~ @, and

Ri = R, then the components of the E field in (A.12) become approxi-
mately

' - - -
Eris Eei( Xy c08 6 cos g - y, cos 6 sin Q=2 sin 9)

‘ + Eq;i («-xi sin p + y4 cos rp)

'
B~ By

The relative phase difference between the reflected electromag-

netic waves of two scatterers is given by

- —‘;\E AR (A.14)

where AR 1is the difference in range. The phase shift for each

scatterer must be computed so that the vector fields can be properly

summed. If the target center is used as the reference point, then for

e o pre
o, R AR A it 5 P
. T TP Tt g et Lo

1
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the i-th scatterer ARi' R-R/ =~ =x 8ing cos g - y; sin6 sin g
- 2, cos § 80 that the fields observed at point Q from the i=th
element have a time dependence of e~1 (Wt + 04) ,

A.3 Total Field Summation

Let
Pwp Tx’t = Re (?x ﬁ’*) Tx’r (A.15)

be the incident power on the target array where

E’-E(cosai’ +sin5‘u*)
] Q

- -
?-H (- sin B ue+c038 ucp)

and § is the polarization angle of the E field referenced to the -y

vector. Then the electromagnetic fields reflected from the i-th

element and observed at Q are given from (A.13) by

E ~[{cos o) sin § -
A AN [( R 11 * TR f21)”1:

+ ¢c08 B Tx; 4+ 8in § 'ﬁ’m] (A.16)

sin g cos B -
rec 1" R v [( fli R f21) Yp

-
- sin § U, + cos § uq)] Aa.17)
where
fli--xicosecosq)-yicose sin ¢ - 2z, sing ’
and

f21--xisincp+yicoscp .




by:
E M cos B sin8
Erec REIJ [( fn+ fZi)“ +cos§ne
ot + Q, + x
+sin8?1’] e( i )
@
sin cos & -3 -
,/ 1[( fli =< fz) t-cos&ue
jwt+a
+cosaﬁ’(p] e( i)

the Tx’t component of received power is given by

*
P rec ™ Re (Ee rec cp rec Ecp rec g rec)

-£ : zfj, cos (o = o) .

6
respectively, by

* *
Pcp rec = Re (Er rec “e rec Ee rec Hr rec)

P
3 EE e an)

and

* *
P rec ™ Re (Eq) rec f'r rec ~ Er rec %y rec)

P g g./ £
= — S,S cos [Q, - O .
R iml g1V 14U (i j)

The components of power received at Q are found from (A.l).

s o
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(A.18)

(A.19)

Thus,

(A.20)

Similarly the U, and ﬁ’cp components of received power are expressed,

(A.21)

(A.22)

@ e miman can el W Vi A%
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A.4 The Scattering Parameters

The RCS, S, is defined by

P
S = 5525 (A.23)
inc
with both Pinc and Pref being referred to the target, that is with the
radial dependence of power removed. Pinc has units of wat:t:s/m2 and
Pref has units of watts. In this case,
R2 M M )
S=% lpr rec r T/ 5,8y cos (ozi - °‘j) . (A.24)
iml jml

The ucp error, e(p, in linear units at the target, is given by

RP M M

—oxe 1 Y Y /Ss. f ( - )
€ - = cos [ O Q .
® Prree 5 gmgm¥ t3H i

(A.25)

The Y error, ¢,, measured in linear units at the target, is given by

RP M M
erec._lzzz S

€, = J 88, f cos(a-a).
o Pr rec i=l j=1 iy i i J
(A.26)
The target phase, referenced to the target center, is given by
M
Ei/ S, sinoy
PHAS = arctan m . A.27)
ig.i/ Si cos Oti

These equations are used in Chapter 2 in the analytic modeling of

the scattering parameters from a target.

" -
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APPENDIX B. STATISTICS OF THE ASPECT ANGLES

Let (Ro, 8o° cpo) be the polar coordinates of the target in the
ground fixed coordinate system, and (R, 6, ¢) be the coordinates of
the origin of the ground fixed coordinate system in the target fixed
coordinate system. Since RO = R, only the aspect angles need to be

considered in the analysis. From (2.1) and (3.3)

sin 6 cos ¢ -sin eo cos g,
sin @ sin ¢ | = [Tq] [TW] ~gin 60 sin P (B.1)
cos 6 ~cos 6

[ sin 6 cos P ~sin 6, cos g
sing sinQ | = [TW] -sin 6 sin g, (B.2)
cos 6 -Cos8 60

where § = ¢ - Q. The angles 6, and ¢, are dependent on the flight path
only and therefore they can be considered as deterministic for the

calculation of the conditional joint density of 6 and ¢. Therefore,

(B.1) and (B.2) may be considered as functions of the random variables
o, B, and 7, and B and y respectively. It is possible to solve (B.2)
for p and 7y as functions of ¢ and Y as folleows,

Let

r, -/sinz 90 c082 P + cos 6
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Ty cos B, = sin 6 cos %
ro sin BO = CO8 90 ’
then
sin 6 cos 5 = - T, cos BO cos B = r, sin 50 sin B
= - r, cos (ﬁ-ﬁo) .
Let
r -/sinz 6 sin’ P+ cos?
r cos y, = sin 6 sin?ﬁ
r sin Yo = cos 6 ’
then

sin 8¢ sin Qg = = T €08 7, cos y + r sin 70 sin y

--rcos(7+70) .
Therefore, from (B.4) and (B.6),

cos (B R BO) - sinrf) cos @

sin 6, sin ¢
0 0
cos (7 + 70) - - -

cos 60

tan Bo = sin 60 cos @,

cos8s 6

tan 7o = 3in o sin g .

Hence, B and y can be written explicitly as

(B.3)

(B.4)

(B.5)

(3'6)

(B.7)

(B.8)

(8.9)

(B.10)

e Wk, e W A hew -
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T, cos B, = sin 6g co8 9,

ro sin 50 = CO8 90 ’
then
sin 6 cos 5 = - I, cos BO cos B - r, sin ﬁo sin B

= - 1, cos (B-ﬂo) .

Let
r -~/r;in2 6 sin’ P+ cos? o
r cos y, = sin g sin 8
r sin 7o = €08 6 ’

then

sin 90 sin Qg ™= = T €08 7, cos Yy + r sin 70 sin y

= - I CO8 (7 + 70) .
Therefore, from (B.4) and (B.6),

cos (B . BO) - - sin;z cos @

sin 6, sin ¢
0 0
cos (7 + 70) =T r

cos 60

tan B0 ® Bin 90 cos @

co8 6

tan 75 = Sin @ sin g .

Hence, B and y can be written explicitly as

(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B 08)

(B.9)

(B.10)

st - ——r o e o

v - e -
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sin 6 cos ¢ cos 6,
p = arccos (- _TJ)+ arctan(sin 5y cos %) (B.11)
sin 6, sin g, \ 0
7 = arccos (- 0 = 9 ) -arctan(-a-a%—s;ﬁ-g (B.12)

where o and r are defined in (B.3) and (B.S5).

The joint probability density function of ¢ and o is found by

the transformation

£.6) £ @¢)

R

where B and y are expressed as in (B.ll) and (B.12), and J is the Jaco-
bian of the transformation. Since & is an additive factor to ¢, the

joint probability density function for ¢ and ¢ is found by convolving
the joint density function for ¢ and ¢ with the density function for

in the ¢ variable only.

The magnitude of the Jacobian of the transformation is given by

55-85]

where the partial derivatives are found by implicit differentiation to

3] =

be

%%acosycos?ﬁ

%= sin$

sk’

= - giny - cot § cos y sin @

%f-cote cos P
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resulting in the expression

le- ainz 6o sinz %0 2
| 3| = 5 - cos” P .

sin” @

The transformation from -y space to 94$ space is one=to-one only
if B and y are restricted to the region 0 = g <% , and 0 =y = 2x,
The quadrant for BO and 7o can be Zound by considering the signs of
the numerator and denominator in (B.9) and (B.10). The quadrant for
(o + 70) and (B - Bo) are found by considering (B.l7) as well as (B.8)
and (B.ll).

Figures B.l and B.2 depict the joint probability density
functions for 6 and P, and 6 and ¢ for § = 1.6497 and § = -0.20186,
i.e.,, at sample point 1 as defined in Chapter 4. Table B.l compares
the moments calculated by numerical integration of the joint probabile-
ity density function for 6 and ¢, and the moments calculated from the

linear approximations of (3.19) and (3.20).
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APPENDIX C. ERROR ANALYSIS

C.1 General

It was pointed out in Chapter 3 that the process described for
computing the statistical characteristics introduces errors due to the
assumptions made. In the computation of the four moments by
numerical integration there are errors introduced at two points. In
the computation of the covariance functions using the characteristic
function method, there are errors introduced at three points. This

Appendix estimates these errors or their level of significance.

C.2 Computation of the Moments Using Numerical Integration

There are two sources of errors in the computation of the moments
by numerical integration as described in Chapter 3. One error is due
to truncation of the data and the probability denisty function. The
other error is due to the use of the rectangular (Euler) technique for
numerical integration. Let x and y be normal random variables with
joint probability demsity function f(x,y) and let g(x,y) be a function
whose moments are to be calculated. Both functions are truncated at

~40 and +40 from the means in each dimension and then sampled at N

points in each dimension., The moments of g(x,y) are computed by

N N
E {gr(x,y)} s L 2 gr(nAx,mAy) f(nAX,mAy) AxXAy
=l m=l
(C.1)
where the origin is shifted to the (=40, =40) point and Ax and Ay

are the sample intervals. If N is sufficiently large, and g(x,y) is a
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relatively smooth function, then the accuracy obtained by (C.l) is
adequate. The error is computing the expectation of a constant
function over the region described using 128 data points in each
dimension is about 0.013 percent.

The first two moments computed this way have been compared to the
results using (3.37) and (3.39) with excellent results. As was
demonstrated in Chapter 4, excellent agreement yith the results of
simulations was also obtained.

C.3 Computation of the Covariance Functions

The computation of the covariance functions using a discretized
version of the characteristic function method introduces errors at
three points. The one-dimensional case will be considered first. The
errors in computing the expectation of a function g(x) are introduced
due to the following assumptions:

(1) The replacement of the actual function g(x) by a periodic
function gT(x).

(2) The use of the Fast Fourier Transform (FFT) to estimate the
Fourier series coefficients for the periodic function gr(x).

(3) The use of a finite number of the Fourier series coefficients
in the sunmation of the expectation of gT(x).

The actual function, g(x), is replaced by a periodic function,

gT(x), such that

8p (x) = g(x)

for

t
[SII]
A
»®
i
i
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Bp (%) = gn(x + KI)

where the period T is defined to be 2Mo where o is the standard devia~ .

tion of the probability density function £(x) which is assumed to have

zexo mean.

The first error in computing the expectation (3.39) is introduced

by the approximation

E {g(x)} ~E ‘gT(x)} . €.2)

This error may be bounded as

El = < g(x) = gT(x) £(x) dx

8 h RS

E {s(x) - s.r(x)}

+ ] 8(x) = gp(x) | £(x) dx < 4 sup | g(x)| erfe (-2%) .

I (€.3)
5 ,
For
. 4g erfe (}_) ~ 3 X 10-5
2 ’ 20 ’
so that
E, S 1.2 X 1074 sup | g(x) | €.4)

The periodic function gT(x) may be represented by its Fourier series

gT(x) = mE.wAm exp ( -2-’%'3-‘) | (C.5)

so that its expectation is given by

o[ E_ oo (58] ()
me m= o (C.6)

where Ox(v) is the characteristic function of the random variable x.

- . - 2a Nei o NIy -
] -}&w .

e e . X gk G S I b
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‘. The second error encountered in computing the expectation is in
estimating the Fourier series coefficients An by using the FFT. From

(3.40), the estimate of the n-th coefficient is given by

N-1
" 1 21t kn Ax
Ram i I span e (g Blpa) ©.7)

which with (C.5) results in

Nel
% 1 21t km Ax 2% kn Ax
A == Z Z A exp (j .._____) exp (.j _—-—_—)
n N k=0 M= 00 n T

_l % A lwexp[~] 2¢(m = n)
N e ™ 1-exp|'32“1§m-n)ﬁ

= nEQAm exp [J (m - n) (N 1; 1) n] NS::n(l:m--nl)‘)ﬂ%

. (c.8)

(X1

0
= ZAn.'.iN,.’gSn<

ime
The resulting error is due to aliasing caused by failure to meet

the Nyquist sampling criterion. Furthermore, it only yields a finite

number of coefficients.
The third source of error is in taking only a finite number of

terms in the summation (C.6) namely,

k
E {gT(x)} = ,E.kA“E (n) (C.9)

where

Ywee, (@) win[-1@)] . o
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A bound on the resulting error may be obtained as

CY A% (m) T % @

ln|>k ® *

A

= 2 sup n

n>k

o [ 32T

’ 1 - exp ( g__(lc_M*l_-_lz) . (C.11)

n

< 2 sup
n >k

For M= 4 and k = 8 the resulting bound is equal to
=11
E, < 3.10 sup lAn’ . (C.12)
n >k
The above analysis for the third error source does.not apply to a
joint characteristic function of strongly correlated random variables.

The normalized two-dimensional characteristic function for two jointly

Gaussian, random variables is given by
¥ (u,v) = exp [- % (02 + 2ruv + vz)]
where r is the correlation coefficient of x and y. When r = ],
? (u,=u) = 1

so that the argument for limiting the sum as in the one~dimensional
case does not hold. However, when ju 4 rv|>8, the characteristic -
function is less than 2 x 10'9. Therefore, only about 8 terms on each
side of the line u = - v sgn(r) need be taken in the summations.

Now consider the spectrum of the transform of the scattering
parameters under study here. It can be shown that 99 percent of the
power is contained in about half of the total spectrum. Therefore,

it is possible to limit the summations to a narrow band about the

s %
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line defined above. In practice, it is possible to obtain excellent

. results using even fewer components than those containing 99 percent

of the power. Similarly the aliasing error represented by (C.8) can

be neglected.




